On Dots in Boxes or
 Permutation Pattern Classes and Regular Languages

Ruth Hoffmann

University of St Andrews, School of Computer Science
9th April 2015

$$
\left(\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
2 & 3 & 5 & 1 & 4
\end{array}\right)=23514
$$

$$
E(23514)=22311
$$

Proved that the following are regular languages under the rank encoding

- Plus-(In)Decomposable Permutations
- Minus-(In)Decomposable Permutations
- Direct Sum of Regular Classes
- σ-Decomposable Permutations
- Simple Permutations

Proved that the following are not regular languages under the rank encoding

- Skew Sum of Regular Classes (in some cases)
- Inflation of Regular Classes (in most cases)
- Wreath Product of Regular Classes (in most cases)
- Wreath Closure of Regular Classes (in nearly all cases)

$E(2143567)=2121111$

Regularity of Plus-(In)Decomposable Permutations

Theorem

Let \mathcal{C} be a regular class. Then $\mathcal{I}_{P}(\mathcal{C})$, the set of all plus-indecomposable permutations of \mathcal{C}, is also regular under the rank encoding.

Corollary
Let \mathcal{C} be a regular class. Then $\mathcal{D}_{P}(\mathcal{C})$, the set of all plus-decomposable permutations of \mathcal{C}, is also regular under the rank encoding.

Proved that the following are regular languages under the rank encoding

- Plus-(In)Decomposable Permutations
- Minus-(In)Decomposable Permutations
- Direct Sum of Regular Classes
- σ-Decomposable Permutations
- Simple Permutations

Proved that the following are not regular languages under the rank encoding

- Skew Sum of Regular Classes (in some cases)
- Inflation of Regular Classes (in most cases)
- Wreath Product of Regular Classes (in most cases)
- Wreath Closure of Regular Classes (in nearly all cases)

$E(6745321)=6644321$

Regularity of Minus-(In)Decomposable Permutations

Theorem

Let \mathcal{C} be a regular class. Then $\mathcal{D}_{M}(\mathcal{C})$, the set of all minus-decomposable permutations of \mathcal{C}, is also regular under the rank encoding.

Corollary
Let \mathcal{C} be a regular class. Then $\mathcal{I}_{M}(\mathcal{C})$ the set of all minus-indecomposable permutations of \mathcal{C}, is also regular under the rank encoding.

Proved that the following are regular languages under the rank encoding

- Plus-(In)Decomposable Permutations
- Minus-(In)Decomposable Permutations
- Direct Sum of Regular Classes
- σ-Decomposable Permutations
- Simple Permutations

Proved that the following are not regular languages under the rank encoding

- Skew Sum of Regular Classes (in some cases)
- Inflation of Regular Classes (in most cases)
- Wreath Product of Regular Classes (in most cases)
- Wreath Closure of Regular Classes (in nearly all cases)

Regularity of the Direct and Skew Sum of Classes

Regularity of the Direct and Skew Sum of Classes

Theorem

Let \mathcal{C} and \mathcal{D} be two regular classes under the rank encoding. Then the skew sum $\mathcal{E}=\mathcal{C} \ominus \mathcal{D}$ is a regular class under the rank encoding if and only if \mathcal{D} is finite.

Theorem

Let \mathcal{C} and \mathcal{D} be two regular classes under the rank encoding. Then the direct sum $\mathcal{E}=\mathcal{C} \oplus \mathcal{D}$ is a regular class under the rank encoding.

Proved that the following are regular languages under the rank encoding

- Plus-(In)Decomposable Permutations
- Minus-(In)Decomposable Permutations
- Direct Sum of Regular Classes
- σ-Decomposable Permutations
- Simple Permutations

Proved that the following are not regular languages under the rank encoding

- Skew Sum of Regular Classes (in some cases)
- Inflation of Regular Classes (in most cases)
- Wreath Product of Regular Classes (in most cases)
- Wreath Closure of Regular Classes (in nearly all cases)

Regularity of σ-decomposable Permutations

Theorem

Let $E\left(\Omega_{k}\right)$ be the regular language of the rank encoded permutations with rank at most k. Let $|\sigma|>2$ be a simple permutation, then set $\mathcal{D}_{\sigma} \subseteq \Omega_{k}$ of σ-decomposable permutations of Ω_{k} is also regular under the rank encoding.

Proved that the following are regular languages under the rank encoding

- Plus-(In)Decomposable Permutations
- Minus-(In)Decomposable Permutations
- Direct Sum of Regular Classes
- σ-Decomposable Permutations
- Simple Permutations

Proved that the following are not regular languages under the rank encoding

- Skew Sum of Regular Classes (in some cases)
- Inflation of Regular Classes (in most cases)
- Wreath Product of Regular Classes (in most cases)
- Wreath Closure of Regular Classes (in nearly all cases)

Regularity of the Inflation of Classes

Lemma (34)

Let σ be any simple permutation of length $n, \sigma\left[\mathcal{C}_{1}, \ldots, \mathcal{C}_{n}\right]=\mathcal{D}$ be an inflation of σ by the regular classes $\mathcal{C}_{i} \subseteq \Omega_{k}$. Then $E(\mathcal{D})$ is a regular language under the rank encoding if and only if \mathcal{C}_{j} is finite when $\sigma(j)$ is not a left to right maximum.

Proved that the following are regular languages under the rank encoding

- Plus-(In)Decomposable Permutations
- Minus-(In)Decomposable Permutations
- Direct Sum of Regular Classes
- σ-Decomposable Permutations
- Simple Permutations

Proved that the following are not regular languages under the rank encoding

- Skew Sum of Regular Classes (in some cases)
- Inflation of Regular Classes (in most cases)
- Wreath Product of Regular Classes (in most cases)
- Wreath Closure of Regular Classes (in nearly all cases)

Regularity of Simple Permutations

Regularity of Simple Permutations

Theorem

The set of all non-simple permutations $\mathcal{N} \mathcal{S}_{k}$ of Ω_{k} is regular under the rank encoding.

$$
\begin{aligned}
E_{R}\left(\mathcal{N S} S_{k}\right)= & E_{R}\left(\Omega_{k}\right) \cap \\
& \left(\bigcup_{l=1}^{k-1} \mathscr{P}_{I} \bigcup_{m=1}^{k-1} m+E_{R}\left(\hat{\Omega}_{k-m}\right) \cup \bigcup_{j=1}^{k-1} j+E_{R}\left(\hat{\Omega}_{k-j}\right) \cup\right. \\
& \bigcup_{a=2}^{k-1 k-1-a} \bigcup_{b=0}^{k-2} \mathscr{Q}_{a, b} \bigcup_{i=0}^{a-2}\left((b+i)+E_{R}\left(\hat{\Omega}_{k-(b+i)}\right)\right)^{(a-i)} \cup \\
& \left.E_{R}\left(\Omega_{k} \backslash\{\varepsilon\}\right) E_{R}\left(\Omega_{k} \backslash\{\varepsilon\}\right)\right) \Sigma^{*}
\end{aligned}
$$

Regularity of Simple Permutations

Corollary
The set of simple permutations of Ω_{k} is regular under the rank encoding.

Simple Permutations of a Non-Regular Class

Theorem

Let \mathcal{C} be a permutation class. Let $\operatorname{Si}(\mathcal{C})$ be the set of all simple permutations of \mathcal{C}. If $\operatorname{Si}\left(E_{k}(\mathcal{C})\right)=\operatorname{Si}\left(E_{k+1}(\mathcal{C})\right)=\operatorname{Si}\left(E_{k+2}(\mathcal{C})\right)$ then $\operatorname{Si}\left(E_{k}(\mathcal{C})\right)$ is the set of words corresponding to all simple permutations of \mathcal{C}.

Proved that the following are regular languages under the rank encoding

- Plus-(In)Decomposable Permutations
- Minus-(In)Decomposable Permutations
- Direct Sum of Regular Classes
- σ-Decomposable Permutations
- Simple Permutations

Proved that the following are not regular languages under the rank encoding

- Skew Sum of Regular Classes (in some cases)
- Inflation of Regular Classes (in most cases)
- Wreath Product of Regular Classes (in most cases)
- Wreath Closure of Regular Classes (in nearly all cases)

Regularity of the Wreath Product of Classes

Lemma (42)

Let \mathcal{A} and \mathcal{B} be regular languages under the rank encoding then $\mathcal{A} \backslash \mathcal{B}$ is regular under the rank encoding if and only if \mathcal{B} is finite or $\mathcal{A} \subseteq \operatorname{Av}(21)$.

Regularity of the Wreath Closure of Classes

Lemma (43)

The wreath closure of a regular class \mathcal{A} containing the permutation 21 is not regular.

Corollary
A wreath closed class \mathcal{A} is regular if and only if \mathcal{A} is finite or consists of ascending permutations.

Open Topics

Is there a constructive way of finding the language of the basis of a geometrically griddable class?

